Automated detection of Diabetic Retinopathy in Three European Populations
نویسندگان
چکیده
Objective: Currently 1/12 of the world’s population has diabetes mellitus (DM), many are or will be screened by having retinal images taken. This current study aims to compare the DAPHNE software’s ability to detect DR in three different European populations compared to human grading carried out at the Moorfields Eye Hospital Reading Centre (MEHRC). Participants: Retinal images were taken from participants of the HAPIEE study (Lithuania, n=1014), the PAMDI study (Italy, n=882) and the MARS study (Germany, n=909). Methods: All anonymized images were graded by human graders at MEHRC for the presence of DR. Independently, and without any knowledge of the human grader’s results, the DAPHNE software analysed the images and divided the participants into DR and no-DR groups. Main outcome measures: The primary outcomes were sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the DAPHNE software with regards to the identification of DR or no-DR on retinal images as compared to the human grader as reference standard. Results: A total of 2805 participants were enrolled from the three study sites. The sensitivity of the DAPHNE software was above 93% in all three studies specificity was above 80%, the PPV was above 28% and the NPV was not below 98.8% in any of the studies. The DAPHNE software did not miss any vision-threatening DR. The areas under the curve (AUC) for all three studies were above 0.96. DAPHNE reduced manual human workload by 70% but had a total false positive rate of 63%. Conclusions: The DAPHNE software showed to be reliable to detect DR on three different European populations, using three different imaging settings. Further testing is required to see scalability, performance on live DR screening systems and on camera settings different to these studies.
منابع مشابه
Diagnosis of Diabetic Retinopathy Using Processing of Fundus Images and Morphological Techniques
Introduction: Diabetic retinopathy is the damaging effect of diabetes on retinal blood vessels that can cause blindness when diagnosed late. Microaneurysms are early signs of the disease that their early diagnosis promotes timely treatment and prevents disease progression. Since this disease is asymptomatic and can only be detected by ophthalmologists, diabetic patients should be tested regular...
متن کاملDiagnosis of Diabetic Retinopathy Using Processing of Fundus Images and Morphological Techniques
Introduction: Diabetic retinopathy is the damaging effect of diabetes on retinal blood vessels that can cause blindness when diagnosed late. Microaneurysms are early signs of the disease that their early diagnosis promotes timely treatment and prevents disease progression. Since this disease is asymptomatic and can only be detected by ophthalmologists, diabetic patients should be tested regular...
متن کاملThe role of haemorrhage and exudate detection in automated grading of diabetic retinopathy.
BACKGROUND/AIMS Automated grading has the potential to improve the efficiency of diabetic retinopathy screening services. While disease/no disease grading can be performed using only microaneurysm detection and image-quality assessment, automated recognition of other types of lesions may be advantageous. This study investigated whether inclusion of automated recognition of exudates and haemorrh...
متن کاملEarly Detection of Diabetic Retinopathy in Fluorescent Angiography Retinal Images Using Image Processing Methods
Introduction: Diabetic retinopathy (DR) is the single largest cause of sight loss and blindness in the working age population of Western countries; it is the most common cause of blindness in adults between 20 and 60 years of age. Early diagnosis of DR is critical for preventing vision loss so early detection of microaneurysms (MAs) as the first signs of DR is important. This paper addresses th...
متن کاملAutomated detection of fundus photographic red lesions in diabetic retinopathy.
PURPOSE To compare a fundus image-analysis algorithm for automated detection of hemorrhages and microaneurysms with visual detection of retinopathy in patients with diabetes. METHODS Four hundred fundus photographs (35-mm color transparencies) were obtained in 200 eyes of 100 patients with diabetes who were randomly selected from the Welsh Community Diabetic Retinopathy Study. A gold standard...
متن کاملCase for Automated Detection of Diabetic Retinopathy
Diabetic retinopathy, an eye disorder caused by diabetes, is the primary cause of blindness in America and over 99% of cases in India. India and China currently account for over 90 million diabetic patients and are on the verge of an explosion of diabetic populations. This may result in an unprecedented number of persons becoming blind unless diabetic retinopathy can be detected early. Aravind ...
متن کامل